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ABSTRACT
The standard definition of security for digital signatures—existential
unforgeability—does not ensure certain properties that protocol
designers might expect. For example, in many modern signature
schemes, one signature may verify against multiple distinct public
keys. It is left to protocol designers to ensure that the absence of
these properties does not lead to attacks.

Modern automated protocol analysis tools are able to provably
exclude large classes of attacks on complex real-world protocols
such as TLS 1.3 and 5G. However, their abstraction of signatures
(implicitly) assumes much more than existential unforgeability,
thereby missing several classes of practical attacks.

We give a hierarchy of new formal models for signature schemes
that captures these subtleties, and thereby allows us to analyse
(often unexpected) behaviours of real-world protocols that were
previously out of reach of symbolic analysis. We implement our
models in the Tamarin Prover, yielding the first way to perform
these analyses automatically, and validate them on several case
studies. In the process, we find new attacks on DRKey and SOAP’s
WS-Security, both protocols which were previously proven secure
in traditional symbolic models.

CCS CONCEPTS
• Security and privacy → Formal security models; Security
protocols; Network security; Web protocol security; • Networks
→ Protocol testing and verification; • Theory of computation →
Cryptographic protocols.
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1 INTRODUCTION
Digital signatures are a core cryptographic primitive, whose well-
known definition has hardly changed for over 30 years. This defini-
tion, Existential Unforgeability under an Adaptive Chosen Message
Attack (EUF-CMA), requires that no adversary can construct a valid
signature for a new message without knowing the corresponding
secret key. EUF-CMA is widely used and considered standard. How-
ever, it allows for some subtle and perhaps unexpected behaviours:
EUF-CMA-secure signature schemes can and do permit adversaries
to, for example,
(1) given a signature, generate a new key pair that can also be

used to verify the signature;
(2) change some bits of a signature without affecting its validity;
(3) given a signature but not its message, produce another signa-

ture on the message for an adversarial key pair; or
(4) compute weak keypairs for which a single signature can verify

against multiple messages.
Indeed, in Table 1 we give a number of widely-used concrete

signature schemes (with columns corresponding in order to the
properties above—we will expand on these later), and see for ex-
ample that RSA-PSS allows generating new public keys against
which existing signatures verify, and that ECDSA allows for signa-
tures which verify for two different messages. These behaviours are

Signature scheme CEO/DEO No-Mall. No-ReSign No-Coll.

RSA-PKCSv1.5 •◦ [69] •◦ [62] •◦ [59] ▲

RSA-PSS •◦ [69] ▲ •◦ [66] ▲

DSA •◦ [69] ✓[71] ▲ •◦ [73]
ECDSA-FreeBP •◦ [38] •◦ [71] ▲ •◦ [71]
ECDSA-FixedBP ✓[67] •◦ [71] ▲ •◦ [71]
Ed25519 ✓[56] •◦ [31] ✓[31] •◦ [31]
Ed25519-IETF ✓[56] ✓[61] ✓[31] •◦ [31]

Table 1: Subtle behaviours of concrete EUF-CMA-secure signature
schemes. Columns refer to the security property, i.e., the absence
of some unexpected behaviour: Conservative Exclusive Owner-
ship (CEO)/Destructive Exclusive Ownership (DEO) (no DSKS), non-
malleability, non-resignability and non-collidability. We will ex-
pand on all these properties later in the paper.
✓ means that the security property holds, and therefore the corres-
ponding unexpected behaviour is not present.
•◦ means that the behaviour is present. For example, ECDSA-FreeBP
signatures are malleable and allow for DSKS attacks.
▲ means that we conjecture that the behaviour is absent, so the se-
curity property holds, but this has not been proven.
FreeBP (resp. FixedBP) means the signature scheme’s base point is
considered a parameter of the signature (resp. fixed in advance).
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not the result of implementation bugs or mistakes; rather, they are
a consequence of how each signature scheme has been designed.

The existence of these subtle behaviours has enabled concrete at-
tacks on protocols. For example, the Mt. Gox Bitcoin exchange fam-
ously lost millions of dollars because the malleability of the underly-
ing signature scheme could be exploited [50], and an earlier draft of
the Automatic Certificate Management Environment (ACME) certi-
ficate issuance protocol would have enabled adversaries to issue
certificates for any Let’s Encrypt domain on the Internet because
of a signature key substitution vulnerability [6].

At the protocol level, there have been many advances in auto-
mated analysis tools. Indeed, automated analysis of security proto-
cols has made its way into mainstream security practice in recent
years: notable success in the analysis of widely deployed standards
such as TLS 1.3, 5G, and many more [29, 32, 34, 45–48, 51, 65] have
demonstrated its value in handling large scale, real world protocols
with complex substructure. Tools such as ProVerif and Tamarin are
given a protocol specification and its security requirements, and
provide either a proof that no attack exists within their model or a
concrete attack trace violating a security requirement, without re-
quiring users to consider all potential edge cases or decide whether
a primitive is being used correctly.

Symbolic verification tools do not directly operate on the cryp-
tographic definition of digital signatures but on an approximation,
which has also hardly changed for several decades: signing and
verifying are both considered as abstract function symbols, and an
equation is added to model that verification of a correctly-generated
signature must succeed. Unfortunately, this approximation does not
include the subtle behaviours we described above, and implicitly
assumes they are not possible. This means that the tools can miss
real attacks: for example, as we will show later, we find a number
of new attacks on protocols which had previously been formally
verified as secure with the traditional symbolic model of signatures.

In this paper, we remedy this shortcoming, by introducing new
models for automated verification of protocols using signature
schemes. Unlike previous work, our models capture these protocol
attacks while allowing for automated attack finding and verification.
We explore models capturing some specific attacks, generalise to a
multi-purpose verification model, and then apply our techniques
to a number of well-known protocols.

Contributions. Our main contributions include:
(1) We develop a new hierarchy of tool-agnostic symbolic models

for digital signatures, which captures attacks and behaviours
omitted from traditional models. Our models include several
falsification models, which capture subtle behaviours, and a
verification model, which is close to the computational defin-
ition. These models make it possible to analyse the impact
of concrete signature schemes on protocols, yielding more
accurate and meaningful protocol analysis. Our models are
tool-agnostic and can therefore be used to improve other sym-
bolic approaches.

(2) Using the Tamarin prover, we develop the first automated
method for finding, or proving the absence of, attacks on se-
curity protocols that exploit subtle behaviours of provably-
secure signature schemes. We evaluate the effectiveness of

our approach on a range of case studies, which show that the
approach is effective at both attack finding and verification.

(3) We use our models to find known and new attacks on proto-
cols which were previously proven secure in coarser models.
Specifically, we break correlation and secrecy for WS-Security
X.509 Mutual Auth (once widely used to secure SOAP ser-
vices), and break authentication and collusion-resistance for
the DRKey key exchange protocol (used for routing). We also
automatically find, and verify the fix for, the known key sub-
stitution attack on ACME draft 4. These protocols were all
previously verified using automated analyses under the tradi-
tional signature model, which does not capture our attacks.

Outline. We have three main sections after the background (§2).
First, in §3 we give symbolic models for improved attack finding,
identifying specific properties which are not captured by existing
models, and show how this enables us to find attacks on protocols.
However, there may exist further behaviours of signature schemes
that are not instances of the properties we identified. Therefore, in
§4 we move to verification instead of falsification, giving a general
model for signature schemes that makes minimal assumptions on
the signature scheme. In §5 we apply our techniques to further case
studies. We discuss further related work in §6 and conclude in §7.

2 BACKGROUND
2.1 Computational Model
We begin with the classical definition of signature schemes, stated
informally. (The formal definitions can be found in [55, 63].)

Definition. A digital signature scheme is composed of three
polynomial time algorithms:
(1) KGen, a probabilistic algorithm, takes in the security parameter

and produces a pair (sk,vk).
(2) Sig, a probabilistic algorithm, takes in a private key sk and a

messagem and produces a signature s .
(3) Vf, a deterministic algorithm, takes in a verification key vk ,

messagem and signature s and outputs success or failure.
It is correct if Vf(vk,m, Sig(m, sk)) succeeds with high probability
for all messagesm and any (sk,vk) output by KGen.

The essential security definition that nearly all signature schemes
are expected tomeet is existential unforgeability against an adaptive
chosen message attack:

Definition. A signature scheme is existentially unforgeable un-
der an adaptive chosen message attack or EUF-CMA-secure if no
PPT adversary has a non-negligible advantage in this experiment:
(1) The challenger generates a keypair and gives the public key to

the adversary.
(2) The adversary may adaptively query a signing oracle polynomi-

ally often which returns a signature on the chosen message.
(3) The adversary wins if they can output a message and signature

pair which is verified and the message was not previously given
as input to the signing oracle.

This security definition captures forgery resistance: even an ad-
versary that can adaptively query for signatures on messages of
their choice cannot forge a signature for a different message.



2.2 Existing Symbolic Models
In the unbounded setting, automated tools such as Tamarin [70],
ProVerif [39], Maude-NPA [54], and CPSA [53] have a long history
and have seen many improvements over time. More recently, Tam-
arin and ProVerif have supported real world protocol development
through analysis of protocols such as TLS 1.3, 5G, and Signal, as
mentioned in the introduction.

Such tools accept a description of a protocol and its security
properties and search for a trace demonstrating a security property
violation, or proof that no violation occurs within the tool’s frame-
work. Each tool is required to model the behaviour of cryptographic
functions, such as digital signatures.

These tools use a term algebra with an equational theory to
model cryptographic messages. The term signature contains the
function symbols with their arity, representing the applicable cryp-
tographic algorithms, such as signing or verification. The equational
theory can then be used to model the properties of the algorithms.

We continue by giving the equational theories for digital signa-
tures.We declare the function symbols after the keyword functions,
with their arity after a / and the equations after the keyword
equations, where all non-declared symbols are interpreted as vari-
ables. For brevity and readability, we use Tamarin’s notation.

Two typical models are given here:

� �
functions: verify/3, sign/2, pk/1, true/0

equations: verify(sign(m, sk), m, pk(sk)) = true� �
Standard Signature Model used by Tamarin and ProVerif� �

functions: rvlSign/2, rvlVerify/3, getMsg/1, pk/1, true/0

equations: rvlVerify(rvlSign(m,sk),m,pk(sk)) = true
getMsg(rvlSign(m,sk)) = m� �

Signature Model with Message Recovery used by both tools

The equation in the standard symbolic signature model allows
the protocol and adversary to verify signatures by applying verify
to a claimed signature, alongside the expected message and public
key, and test if the resulting term is equal to true. In these models
of signatures, a public key is considered to be a function of a secret
key, rather than the typical notion that both are functions of a seed
value. We follow the traditional symbolic model in this paper. Note
that converting between the two representations is straightforward.

These models have become a standard over the past 20 years,
see [72, Page 37] for Tamarin’s version, and [41, Page 14] for
ProVerif’s. Indeed the message recovery model appears verbatim
in [39], the original ProVerif paper. Tools such as CPSA [53] and
Maude-NPA [54] use similar models.

The ProVerif manual [41, Page 46] proposes an alternative model,
which captures non-deterministic signatures with message and key
recovery:� �
functions: spk/1, sign/3, getmess/1, checksign/2,getkey /1

equations: checksign(sign(m,k,r),spk(k)) = true
getmess(sign(m,k,r)) = m
getkey(sign(m,k,r)) = spk(k)� �

ProVerif’s Probabilistic Model with Message and Key Recovery
(Translated into Tamarin notation)

This removes the bijection between signatures and the messages
they correspond to, allowing for more behaviour to be expressed.
In this model it is possible to extract the message from a signa-
ture using the second equation, and to extract the public key from
a signature using the third equation. We were unable to find a
publication actually using it in practice.

2.3 TamarinModel background
As explained previously, Tamarin uses a term algebra with an equa-
tional theory tomodel cryptographic primitives and their properties.
The execution of a protocol in an environment with an adversary is
then represented as a labeled transition system. The state consists
of messages on the network, the adversary knowledge, and the
internal states of the protocol participants. Protocol and adversary
interact by exchanging messages on the (adversary-controlled) net-
work. Both protocol rules and adversary capabilities are specified
as labeled multiset rewrite rules. These are used to define a trans-
ition system that specifies a set of traces, which model all possible
sequences of events. The security requirements are then specified
in a (guarded) fragment of first-order logic, expressed over a trace.
We will now detail the concepts that are required for our exposition
in the remainder of the paper.

The state of the transition system is given by a multiset of facts.
Facts are special symbols that take any (fixed) number of terms as
their arguments. There is a special set of them that encodes mes-
sages on the network as well as adversary knowledge. All other facts
represent the protocol state. We generally write Factname(t1, t2,
t3) for a fact named Factname with three terms as its arguments.

A labeled multiset rewriting rule is then of the form� �
rule name:

[ l ] --[ a ]-> [ r ]� �
where rule is a keyword, name is an identifier, and l, a, r are

multisets of facts representing the premises, actions, and conclusions
respectively. All of these may contain variables. Some rules may
have no associated action, and in that case we omit the action [ a
] in the rule description.

The labeled transition system operates on ground terms, i.e., terms
without variables. A rule is applicable in a given ground state when
an instantiation of the premises of the rule is a subset of the current
state. Applying a rule changes the state by removing the premises,
and adding appropriately instantiated conclusions. The instantiated
action facts are the action associated with this rule instance.

An execution is a sequence of states starting from the empty set
and using rule instances to transition from one state to the next.
Then, a trace is the sequence of ground action facts appearing at
the rule instances in a protocol execution.

Security properties are defined in a fragment of two-sorted first-
order logic, with messages and timepoints, and quantification is pos-
sible over both. The atoms considered are then⊥, term (in-)equality
s = s’, timepoint ordering t1 < t2, timepoint equality t1 = t2, or
an action Fact at a timepoint t1 written Fact(terms)@t1, together
with the usual logic connectives. Examples of security properties
that can be modeled this way are secrecy, Perfect Forward Secrecy
(PFS), Key Compromise Impersonation (KCI), and a large range of
authentication properties, all with respect to potentially complex
adversary models.
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Figure 1: Sketch of the original STS-MAC protocol [52]

We additionally consider restrictions which limit the explored
state space. Technically, restrictions are formulas just like security
properties, and their semantics ensure that all traces must satisfy
the restrictions. If a trace violates any restriction, it is immedi-
ately discarded. Restrictions are often used to model conditional
rewriting rules, for example, to model inequality checks and that
an action happens only once. More complex uses can enforce a
passive (possibly message reordering) adversary by ensuring each
received message by a protocol participant was previously sent by
a different participant, and is only received one time. For full details
on Tamarin see [70].

2.4 Running example: STS-MAC
We use Station-to-Station (STS) [52] as a running example, since it is
a simple and well-understood authenticated key exchange protocol.
It has the additional benefit of a long history of being exploited using
surprising signature properties like those we consider, see [38]. In
STS (specifically the STS-MAC variant), two parties exchange Diffie-
Hellman (DH) ephemeral keys with a signature and a MAC in order
to derive a shared symmetric key, as shown in Figure 1.

Wewrite x ←$Zp to denote drawing a random number. Sigska (t)
means signing the term t with the private key ska associated with
the public key pka . We assume the parties can authenticate each
other’s public key, for example through a certificate signed by a
trusted third party, which we denote certa . We assume that before
signing the public key, the trusted third party verifies ownership of
a corresponding private key.

In the usual symbolic notation signing becomes sign(t,ska) for
a private key ska (representing some ska ) for which the verification
key is pk(ska) (representing the corresponding pka ). Similarly, by
MACдxy (σa ) we mean the MAC created with key дxy for term σa .
The protocol’s intended result is that both parties share the key K .

After a key agreement protocol like this completes, we expect
some security properties to hold about the resulting key. In our veri-
fication in the following sections, we will consider the properties:
key secrecy, identity agreement, and strong session agreement. We
interpret key secrecy to mean that when two honest parties finish
a protocol run with each other, the resulting key is secret from the
adversary. Identity agreement means that, whenever two honest

parties agree on a key, they also agree on each other’s identity.
Finally, strong session agreement means that if two honest parties
finish a protocol run with each other, they agree on the transcript of
that session. That means that every message sent by A (respectively
B) was received by B (respectively A) and every message that was
accepted by A (respectively B), was transmitted by B (respectively
A) without alteration.

3 IMPROVED ATTACK FINDING IN THE
SYMBOLIC MODEL

In this section we describe four properties of signature schemes
that can lead to real-world attacks: key substitution, malleability,
re-signing and colliding signatures. We relate each property to the
existing computational and symbolic definitions, then develop new
symbolic models that can capture those behaviours and attacks not
already considered. We stress that all of these behaviours are per-
mitted by the standard definition of signature security (EUF-CMA)
and are not the result of implementation mistakes. For each sym-
bolic model we develop, we demonstrate an attack on an example
protocol missed by the traditional model.

3.1 Key Substitution
In a key substitution attack, the adversary is given an existing sig-
nature, message and public key, and is able to to construct a new
public key (and possibly a newmessage as well) such that the honest
signature will verify under the new public key (and new message).

This area of research has had at least three terminologies: Blake-
Wilson and Menezes [38] called such attacks Duplicate Signature
Key Selection (DSKS); Menezes and Smart [67] termed them Key
Substitution attacks; andmost recently Pornin and Stern [69] presen-
ted it as exclusive ownership. We follow this latest terminology.

3.1.1 CEO. The following property was first noted in [67], but we
draw our definition from the later work [69].

Definition. [69, Def 1] A signature scheme fails to provide Con-
servative Exclusive Ownership (CEO) if there is an efficient al-
gorithm fake(pk, (sig,m)i ) that given a public key and a sequence
of message and signature pairs under that key, outputs a key pair
(pk′, sk′) such that pk , pk′ and Vf

(
pk′,mj , siдj

)
= true for some j .

Some signature schemes, including ECDSA (where the signa-
tures have a fixed generator) have been proven to satisfy CEO [67].
Other schemes, such as ECDSA (with signature specified generat-
ors) and RSA-PSS, do not satisfy CEO and a fake algorithm can be
constructed for them [38].

Traditional symbolic models of signatures implicitly assume that
CEO holds, because they do not include such a fake algorithm:
each signature in the traditional model can only be verified by the
(unique) public key that corresponds to the secret key used for
signing.

To model this additional behaviour, we introduce a new abstract
function CEOgen that models the existence of such an algorithm
as formalised within the CEO definition. This function takes as
argument a signature, and returns a private key x . We then add an
equational theory that expresses that if x is output by the CEOgen
function, then the corresponding public key pk(x) can also be used
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Figure 2: Sketch of STS-ID [38], which includes the identities of the
communicating parties in the MAC.

to successfully verify the corresponding signature. The CEO in-
equality pk , pk′ is given by construction, because the terms
representing the two public keys are distinct.� �

functions: CEOgen /1
equations: verify(sign(m, sk), m, pk(CEOgen(sign(m, sk)))) =

true� �
No-CEO: Model for signature schemes that do not satisfy CEO.
(I.e., they allow for DSKS/Strong Key Substitution attacks.)

If we add this equational theory, called no-CEO, to Tamarin and
rerun our analysis of STS-MAC, Tamarin immediately discovers a
Unknown Key Share (UKS) attack, violating identity agreement. In
the attack, two parties A and B establish the same session key, but
have different assumptions on whom they are talking to: A believes
they share the key with B, but B believes they share the same key
with a corrupted agent E. Thus, if A later receives a message from B
encrypted with the shared key, they will incorrectly assume it was
intended for them, although B believed they were sending it to E.

This attack was first reported by Blake-Wilson and Menezes
[38] where they described it as a DSKS attack. It has also been
referred to as “Strong Key Substitution” by [42, 67]. The adversary
waits until A sends the final message to B, then using the no-CEO
property produces a new public key, registering it with the Certi-
ficate Authority (CA), for which A’s signature will verify. Note that
the adversary cannot just replace the signature directly, since it is
protected by the MAC, to which the adversary does not know the
key. The adversary then replaces the associated certificate from A
with their own. Consequently, B concludes they are talking to the
adversary, even though the key is shared with A and in fact secret
from the adversary.

Blake-Wilson and Menezes [38] also suggested the fix of includ-
ing the identities under the signature, depicted as STS-ID in Figure 2.
If we model this patched protocol in Tamarin together with our
CEO-falsifying equation, Tamarin successfully proves each prop-
erty, i.e., secrecy, identity agreement, and strong session agreement,
thus verifying the fix in this model of signatures.

3.1.2 DEO. It was later discovered [25] that the adversary could
also change the message that the signature verifies for and, more

troubling, that this appears to be possible in practice whenever
the original attack was possible. We mark in red the differences
between the following definition and that of CEO.

Definition. [69, Def 2] A signature scheme fails to provide De-
structive Exclusive Ownership (DEO) if there is an efficient algorithm
fake(pk, (sig,m)i ) that given a public key and a sequence of message
and signature pairs under that key, outputs (m′, pk′, sk′) such that
pk′, sk′ are a key pair, pk′ , pk,m′ ,mj , and Vf(pk′,m′, siдj ) =
true for some j.

This is equivalent to Message Key Substitution [67]. [69] also
defines Universal Exclusive Ownership (UEO) as the combination
of both CEO and DEO.

So, to model this symbolically, we adapt the no-CEO definition
in the following way. We first note if there exists a fake function
as in the DEO definition, then the adversary can choose a second,
distinct messagem′. Unlike in the pk′ case, there the distinctness
does not follow from the construction. We cannot directly model
this distinctness by using equational theories. We therefore model it
through Tamarin’s support for restrictions and rules, which enable
a form of conditional rewriting. A standard restriction is Neq(x,y),
which only enables the transition if x , y. We add an equation as
before, but mark the function that models fake as a private function.
The adversary cannot apply private functions itself. Instead, we give
the adversary access to the function through a rule, which enables
us to enforce the restriction. This leads to the following model:� �

functions: DEOgen /2 [private]
equations: verify(sign(m1, sk), m2, pk(DEOgen(m2,sign(m1, sk))

)) = true

rule make_DEO_sk:
[In(<m2,sign(m1,sk)>)]
--[Neq(m1,m2)]->
[Out(DEOgen(m2,sign(m1,sk)))]� �

No-DEO: Model for signature schemes that do not satisfy DEO.

After adding this equation and rule to Tamarin, we rerun our ana-
lysis on STS-ID and discover a UKS attack. This attack was reported
in a short paper by Baek and Kim [25]. The attack proceeds in much
the same way as the attack on the original STS-MAC protocol. The
adversary waits until A sends the final message and then produces
a public key for which A’s signature will verify, but for a message
altered to include the adversary’s identity.

Chevalier and Kourjieh [44] considered the decidability of pro-
tocol verification in the context of CEO and DEO, but neither imple-
mented their algorithm nor considered any other properties. Inter-
estingly, some years later, STS-MAC and STS-ID were proven to be
secure against UKS attacks using the traditional symbolic model of
signatures in [70]. This was possible since the traditional symbolic
model did not take these signature behaviours into account, thereby
missing the previously published UKS attacks [25, 67].

Baek and Kim [25] recommended adoption of an alternative
variant of STS-MAC, dubbed ‘key agreement mechanism 7’ in
ISO/IEC 11770-3 [57], which we show in Figure 3 as STS-ISO. Here,
instead of including the identities of the communicating parties
under the signature, they are directly MACed. We analyse this pro-
tocol in Tamarin with respect to these DEO and CEO equations
and find the protocol is proven secure under this model. We return
to the security of this STS variant in the next section.
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Figure 3: Sketch of STS-ISO [38], which includes the identities of the
communicating parties.

3.2 Malleability
Signature schemes that are provably secure in the standard sense
of being EUF-CMA may still be malleable. If a signature scheme is
malleable, successful verification does not preclude that the signa-
ture was modified. In contrast, non-malleability implies that if a
signature is verified under an honest public key, the signature is
the same as one produced by the honest party.

Non-malleability is not implied by the standard forgery defini-
tion, which only describes the difficulty of producing a signature
which verifies under a different message. For example, ECDSA [71]
and EdDSA are malleable. Interestingly, whether or not this poses
a problem is the subject of dispute between signature scheme de-
signers and implementers. For example, Ed25519 was originally
designed without regard for malleability [31], whereas the IETF
standardisation body decided to explicitly require implementations
to enforce non-malleability [61].

In practice, the design of security protocols may implicitly rely
on the assumption of non-malleability, while their instantiation
may only use a EUF-CMA-provably secure signature scheme.

Symbolic model for malleability: We provide an additional
capability to the adversary allowing them to make a new signature
out of an old one. This can be done in several straightforward ways;
the main insight is to ensure to explicitly express the “malleable”
part of the signature construction. Thus, the adversary cannot
change arbitrary parts of the signature, since that would break the
normal assumptions, but only the malleable part which otherwise
does not affect unforgeability.

This can be modeled in Tamarin’s framework by extending the
term model for signatures with an additional argument, abstracting
the malleable information. The signature convention then becomes

sign(m, rep, sk)

wherem represents the signed payload data, sk the signing key, and
rep the malleable format. The corresponding verification remains
similar to the existing one, in the sense that it ignores rep and
works as before onm and sk. We also provide the adversary with
an operation that allows them to change the malleable part:

� �
functions: mangle /2

equations: mangle(sign(m,r,sk),repnew)= sign(m,repnew ,sk)� �
Malleability: Model for malleable signature schemes.

This additional capability enables the adversary, given a single
signature, to produce an arbitrary number of different ones, that
all verify under the same public key and message.

Using this model, we analyse STS-ISO. Now the property of
strong session agreement fails, as the adversary can alter a signature
whilst it is in flight, but both parties believe it is valid. Consequently
one party accepts a message which was not transmitted by the other,
breaking agreement.

Unlike the other properties in this section, malleability has long
been accepted as problematic behaviour, leading to the introduction
of a stronger definition of signature scheme security, Strong Exist-
ential Unforgeability under an Adaptive Chosen Message Attack
(SEF-CMA) [22, 43]: instead of finding a new message with corres-
ponding signature, the adversary just has to find a new valid pair,
andmay reuse a queried message. Signatures with SEF-CMA are not
malleable, and implementing STS-ISO with such a scheme would
provide strong session agreement. In §3.5 we analyse a protocol
which achieves this without requiring a SEF-CMA scheme.

3.3 Re-signing
As we saw in §2.2, traditional symbolic models have considered
the distinction between message-revealing and message-hiding
signatures. However, in some signatures schemes a signature over
a message reveals the hash of that message, preserving secrecy
but allowing an adversary to re-sign the hashed messaged under
their own key. We model this by providing the adversary with the
explicit capability to re-sign signatures, even if the signature is
message-hiding and the message is secret.� �
rule: ReSign
[ In( sign(m,r,sk1), sk2 ) ]
-->
[ Out( sign(m,r,sk2 )) ]� �

Re-sign: Model for re-signing an unknown message.

To illustrate the implications, we introduce the following syn-
thetic variant of STS-MAC which we call STS-KSIG and present in
Figure 4. Here, identities are fixed in the first message. However, the
protocol has dropped the MAC value in favour of directly signing
the secret value.

Analysing this protocol with the key substitution model finds
no attacks, since the responder’s view initiator’s key is fixed before
the initiator discloses a signature. However, when we add the re-
signing equation we immediately discover an UKS attack, as the
adversary can form a new signature on the secret key from Blake’s
response, consequently claiming Blake’s DH public key as their own,
despite not knowing the shared key. Much like the UKS attacks on
STS-MAC and and STS-ISO, this attack violates identity agreement.

3.4 Colliding Signatures
Stern et al. [71] give an algorithm to produce a signature and public
ECDSA key against which two messages of the adversary’s choice
both verify. Ed25519 allows this behaviour to a much greater de-
gree: selecting signature and public key values from the order-eight
subgroup leads to verification passing for any message with high
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Figure 4: Sketch of STS-KSIG, a synthetic variant of STS-MACwhich
fixes the identities in the first message but drops the MAC in favour
of signing the secret.

probability. The design paper for Ed25519 [31, Page 7] explicitly
notes this behaviour and argues it is not problematic, while imple-
mentations are split: LibSodium rejects low order elements [60],
but Go’s standard library currently accepts them [16].

Definition. We say a signature scheme has non-colliding signa-
tures if it is computationally infeasible for an adversary to produce a
public key and signature combination such that verification of more
than one message succeeds with non-negligible probability. I.e., it is
infeasible to select private and public keys and a signature, sk, pk, s ,
such that there exist messagesm1,m2, for which Vf(s,m1, pk) = true
and Vf(s,m2, pk) = true.

Colliding signatures violate two implicit properties that protocol
designers sometimes rely on:
(i) if a signature verifies against a particular public key and mes-

sage, then the signer knew the message that was signed; and
(ii) for a given signature and public key, there exists a unique

message which will verify under it.� �
functions: weak/1
equations: verify(sign(m1,r,weak(x)),m2,pk(weak(x))) = true� �

Colliding Signatures: Model for colliding signatures.

This model allows for the worst case behaviour, where a partic-
ular signature and public key will verify for any message without
requiring the adversary to pick the messages they wish to collide in
advance. We consider a (synthetic) variant of the previous protocol
where the signatures are encrypted under the recipient’s public key,
dubbed STS-SCRYPT and shown in Figure 5, using the equational
theory for colliding signatures. STS-SCRYPT patches STS-KSIG
to prevent the adversary from re-signing a message; as well, the
key substitution equations cannot be applied as there is no visible
signature for the adversary to steal.

However, running Tamarin with our colliding signature equa-
tion reveals an attack. The adversary can simply register a colliding
public key and asymmetrically encrypt their own colliding signa-
ture. The resulting value will verify with high probability, even
though the adversary does not know the message being signed.
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K :=дxy

Figure 5: Sketch of STS-SCRYPT, which patches STS-KSIG by asym-
metrically encrypting the signatures.

3.5 Fixing STS-MAC
An alternative to STS-ID was proposed in [38], which we refer to as
STS-KDF and show in Figure 6. STS-KDF works just like STS-MAC
but then uses a Key Derivation Function (KDF) to bind the shared
key to the identities of the participants, KDF (дxy , ida , idb ), instead
of using only the shared Diffie-Hellman secret дxy .
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K :=KDF(дxy , ida , idb )

Figure 6: Sketch of STS-KDF [38], which patches STS-MAC by in-
cluding the identities of the communicating parties in the KDF.

Noting that KDFs were poorly understood (at the time), the au-
thors explicitly recommended using STS-ID over STS-KDF. It has
been nearly two decades since their paper was published and we
can now say that KDFs have stood the test of time. We analyse
STS-KDF in Tamarin, allowing the adversary to use all of the new
properties we have discussed in the previous section and find that
Tamarin proves that all three properties hold, making this protocol
the only STS variant we have considered which satisfies all three
security requirements (in this signature model) whilst only using
EUF-CMA signatures. However, can we be sure no additional sig-
nature equations exist which will break this protocol? We return
to this question in §4.



3.6 Summary
We summarise our analysis results in Table 2. We note that the
traditional symbolic model fails to find any of the attacks we have
discussed here. Our attack finding models only slightly increase
running times, which implies the approach is tractable. This is
better than we expected, considering the additional behaviours that
Tamarin must consider, and that we did not introduce any new
heuristics for this model.

We have seen several properties of signature schemes, none
of which are implied by EUF-CMA, the traditional (and still most
common) definition of signature scheme security, nor are they the
result of implementation mistakes. In practice, many signature
schemes in fact do not meet these properties: in Table 1 we gave
a list of widely-used signature schemes and whether the subtle
behaviours are present.

In contrast, the existing definitions of symbolic signatures in
current tools implicitly assume all of these properties hold, which
means that they cannot discover the corresponding attacks. To
remedy this, we presented symbolic models for the absence of these
properties, which enable finding those “invisible” attacks.

Full sources to all of our models are available at [58].

4 IMPROVED SYMBOLIC MODEL FOR
VERIFICATION

In the previous section, we characterised a number of behaviours
not captured by the traditional symbolic signature model and re-
paired the deficiency. However, each improvement is ad-hoc, de-
signed to only capture a known behaviour, and provides no as-
surance that further, more subtle, behaviour has not been omit-
ted. Thus, while the models in the previous section are extremely
effective for attack finding, they raise the obvious question for
verification: did we model enough, or do we miss more attacks?

In this section, we address this through the development of an
entirely new symbolic model for the verification algorithm of digital
signatures, directly inspired by the standard computational security
definition for signatures and which we call Symbolic Verification of
Signatures (SVS). It is a symbolic model for signature verification
that makes minimal assumptions, relying only on the implications
of existential unforgeability.

4.1 Specification
Revisiting the definitions of correctness and forgery resistance from
§2.1, we note the behaviour of the verification function is specified
only when the public key is honestly generated. To reiterate, the
first requirement is to accept correctly generated signatures for
honest public keys:

∀pk, sk,m ∈ M : (pk, sk) ← gen()

⇒ verify(sign(sk,m),m, pk) = true

The second implies that if a signature can be verified with an hon-
estly generated public key for some message m, then m and the
matching signing key were previously used to sign:

∀pk, sk,m ∈ M, s : (pk, sk) ← gen()

∧ verify(s,m, pk) = true⇒ previously: sign(sk,m)

We note that whereas sign can be a probabilistic algorithm, verify
is implicitly assumed to be a deterministic algorithm.

There are no further requirements on the output of verify given
by the standard computational definition. The traditional definition
of symbolic verification, shown in §2.2, agrees with the computa-
tional definition but further specifies that verify implicitly out-
puts false in any situation in which it is undefined, i.e., verification
against a malicious key. Many of the equations we gave in §3 essen-
tially remedied this in an ad-hoc fashion, by specifying additional
cases where verify could return true.

We now build a symbolic definition of verify that agrees with
the computational one: where its output is not otherwise con-
strained, we let the adversary choosewhether it returns true or false.
This definition encompasses our previous equations for maliciously
generated public keys, as well as further unknown equations, so
long as they are not ruled out by the computational definition.

In a symbolic setting, we consider traces made by a series of
transitions of a labeled transition system, which (implicitly or ex-
plicitly) describes the state of the protocol at that point in the trace.
When signature verification occurs in a trace, we now require the
following constraints to be observed:
(1) If the public key was honestly generated, the verification of a

corresponding honest signature must succeed.
(2) If the public key was honestly generated, the verification of a

forged signature must fail.
(3) If this particular message-signature-key triple has been verified

before, the result is defined by the previous answer.
(4) Otherwise, consider all possibilities—i.e., let the adversary de-

cide.
We could model the first and second constraints purely in the term
algebra. Similarly, the fourth constraint corresponds to allowing
the adversary to send a value over a channel to the protocol. The
third constraint is the interesting one because it requires storing
(monotonic) state about previous queries. Succinctly, the verifica-
tion output depends both on the “local query”, the history of the
trace, and the adversary’s current choice. Consequently our sym-
bolic model must record whether public keys have been created
honestly, and what verification checks have been made previously.
We now give an implementation of this abstract specification in
Tamarin.

4.2 Tamarin Implementation: User-Visible
We use the function signature as defined in §3.2. We allow for public
key and message extraction as the modeller wishes. We omit the
verification function and its associated equation, and will replace it
with a different mechanism that makes minimal assumptions on
the properties of the scheme.

In previous approaches, the signature verification function was
encoded into the term algebra, and explicitly stated under which
conditions signature verification returns true. Here, we will instead
only specify restrictions for the signature verification results, and
consider all possibilities in other scenarios. To implement this, we
specify signature verification as an annotation on a protocol rule,
which guards the transition according to a series of first order
logical statements we give below. So, we begin by defining the
trace annotations that we use for restriction checks. Each of these



annotations can be added to Tamarin as an action in a mechanical
fashion for the rule using it:

Honest Key generation. Where the protocol honestly generates a
public key pk, we label the corresponding transition with the action
Honest(pk). This specifies that the public key has been output by the
generation algorithm for signatures and consequently, the various
restrictions on the signature verification algorithm will apply if a
signature is tested against this public key.

Signature Verification. Where a protocol will only make a certain
transition conditional on the result of a signature verification result
(be it true or false), we will provide an action label for this occur-
rence. Unlike the Honest(pk) label, we will later use restrictions, first
order formulae, to restrict situations under which this transition can
occur. When a protocol wishes to verify a particular signature term
sig against a particular message and public key combination (la-
belled tm and tpk), we will write Verified(sig, tm, tpk, result) where
result may be true or false depending on whether the transition
should be allowed to occur.

Manipulation of Honest Signatures. We also provide the equation
for malleable signatures and the rule for re-signing we discussed
in §3.2 and §3.3. Malleability allows an adversary to manipulate an
honest signature and is therefore not part of our improvements to
the signature verification algorithm. Re-signing has a very subtle
usage for the adversary: if (i) the adversary compromises the private
key of an honestly generated key pair, (ii) the signature theory is
not message revealing, and (iii) the adversary is in possession of a
signature for an unknown message, then the adversary can use the
re-signing rule to generate a new signature, under the compromised
honestly generated key, for the unknown message. As this refers
to the generation of a new signature under an honestly generated
public key, it is orthogonal to our changes to the specification of
signature verification for malicious public keys.

4.3 Tamarin Implementation: Internal
Syntactic Transformations: Behind the scenes, we will mechanically
transform Verified(sig, tm, tpk, result) to an action fact
Verified(sig, sm, spk, tm, tpk, result) using the following extraction
functions described in the listing below. We define sm = e1(sig) and
spk = pk(e3(sig)). This transformation is needed for purely tech-
nical reasons: Tamarin requires reducible functions to be specified
in the action fact annotation rather than in restriction formulae.� �
functions: e1/1, e2/1, e3/1 [private]

equations: e1(sign(x,y,z)) = x
e3(sign(x,y,z)) = z� �

Extraction Functions for Signatures. These are not used by the
protocol or the adversary, just by the implementation.

These functions allow us to easily refer to the message and
public/private key that a signature corresponds to. Note that in the
event the signature is not honestly generated, these functions are
still well defined, but simply do not yield a result (technically, they
will not reduce).

We now provide a series of restrictions which restrict the traces
that can occur. All of our restrictions concern the behaviour of the
signature verification function.

Correctness. This requirement follows directly from the require-
ment that an honestly generated public key, an honestly generated
signature, and the correct message must verify as true.

Correctness : ∀sig, tm, tpk, t1, t2. Honest(tpk)@t1 ∧

Verified(sig, tm, tpk, tm, tpk, false)@t2 =⇒ ⊥

NoForgery. Here we state that if a signature verification does
succeed against an honest public key, then the signature must have
been honestly produced.

NoForgery : ∀sig, tm, tpk, sm, spk, t1, t2. Honest(tpk)@t1 ∧

Verified(sig, sm, spk, tm, tpk, true)@t2

=⇒ sm = tm ∧ spk = tpk

Consistency. Verification is typically defined as a deterministic
function, here we specify that repeated calls to verify will always
return a consistent answer.

Consistency : ∀sig, sm, spk, tm, tpk, r1, r2, t1, t2.
Verified(sig, sm, spk, tm, tpk, r1)@t1 ∧

Verified(sig, sm, spk, tm, tpk, r2)@t2 =⇒ r1 = r2

The result of this model is that if a particular transition is labeled
with a verification annotation it will be allowed to occur unless it
violates one of these three restrictions.

If we compare these restrictions to our earlier specification, we
note the following: in the event that the signature is being verified
against an honest public key, Correctness ensures honest signatures
will be accepted and NoForgery ensures forged signatures will be re-
jected. Otherwise, the only rule that will apply is Consistency which
simply ensures signature verification calls are deterministic. It is
straightforward to see how this presentation matches our earlier
specification, as this expresses our required properties to Tamarin
directly. Consequently, this Symbolic Verification of Signatures (SVS)
model allows the adversary to perform key substitution attacks,
craft colliding signatures and many other known or unknown be-
haviours concerning maliciously chosen public keys.

4.4 Results
We now show that the above model is tractable in practice and we
present results and running times in Table 2.

This model, as close as it is to the computational definition, forces
us to consider issues not normally raised in a symbolic analysis.
Traditional symbolic tools often produce an attack trace that is
practical in reality, as it consists of a series of explicit capabilities
provided to the adversary. In contrast, our SVS model is closer to
the computational model in the sense that the attack trace will
consist of the adversary specifying certain signatures pass or fail
verification, but providing no intuition on how an adversary may
arrange for this to happen.

Consequently, both our SVS model and our earlier models for
attack finding are independently of interest to protocol modellers.
First, the SVS model (§4) should be used and if Tamarin returns a
proof, it is within the strongest model of signature security we have
described. However, should it return an attack trace, the modeller
can use our attack finding models (§3) to effectively recover practical
attacks that could be used in reality. By using the attack finding
model for each property separately, it is possible to isolate the



STS-MAC Signature Security property Time in
variant Model Sec IA SSA seconds

MAC
Traditional ✓ ✓ ✓ 14
no-CEO ✓ •◦ •◦ 35 ∗
SVS ✓ •◦ •◦ 23 ∗

ID
Traditional ✓ ✓ ✓ 14
no-DEO ✓ •◦ •◦ 68 ∗
SVS ✓ •◦ •◦ 16 ∗

KSIG
Traditional ✓ ✓ ✓ 13
Re-sign ✓ •◦ •◦ 46 ∗ †
SVS ✓ •◦ •◦ 30 ∗

SCRYPT
Traditional ✓ ✓ ✓ 16
Coll. ✓ •◦ •◦ 25 ∗
SVS ✓ •◦ •◦ 23

ISO
Traditional ✓ ✓ ✓ 17
Mall. ✓ ✓ •◦ 34
SVS ✓ ✓ •◦ 25

KDF
Traditional ✓ ✓ ✓ 3
All in §3 ✓ ✓ ✓ 19
SVS ✓ ✓ ✓ 9

Table 2: Verification results when applying our various Tamarin
models to a number of distinct STS-MAC variants.
Sec, IA and SSA are respectively the security properties of key
secrecy, identity agreement and strong session agreement.
✓ indicates that Tamarin successfully verified the property
•◦ indicates that Tamarin found an attack
∗ indicates that attack finding was done in the bounded model
† indicates that the non-default i heuristic was used for the proof

signature behaviour which is leading to the attack and thus consider
possible mitigations. We demonstrate this functionality on our case
studies in the next section.

It is possible that our SVS model returns that an attack is found,
but none of our falsification models yields an attack. In this case, we
suggest it is best to think of the result as “Not Proven”. There may
well be an attack as the protocol requires behaviour of signatures
not provided by the standard definition, yet Tamarin is not aware
of a method of crafting public keys or signatures to enable the attack
in practice. This means one does not have the desired symbolic
proof, but still gets the proofs for the falsification models, which is
a much stronger guarantee than previously.

5 FURTHER CASE STUDIES
We now demonstrate the utility of our approach on more com-
plex case studies. We automatically find three attacks on different
real world protocols, two of which are novel and previously unre-
ported. Furthermore, all three protocols have undergone previous
formal analysis using the traditional model of digital signatures
and reported to be secure:
(i) a known attack on an earlier version of the Let’s Encrypt

certificate issuance protocol, arising from a key substitution
property;

(ii) a previously unreported attack on a WS-Security Handshake,
arising from a key substitution property. This attackwasmissed
despite having been analysed using ProVerif in two separate
papers.

(iii) a previously unreported attack on DRKey, a key exchange
protocol, arising from a weak signature property. This last
attack was missed in a previous formal analysis, and allows
us to violate the security claims of OPT, an origin and path
tracing protocol which uses DRKey.

5.1 Let’s Encrypt
Let’s Encrypt (LE) is the world’s most popular Certificate Authority.
To issue certificates automatically, it uses the ACME protocol for
issuance, renewal and revocation, as standardised by the Internet
Engineering Task Force (IETF) [11]. ACME allows a website owner
to prove ownership of a domain and request a certificate from a CA
via a choice of signature-based challenge-response protocols. If the
protocol succeeds, LE issues a certificate to the owner.

ACME went through a number of drafts prior to (and after)
release. Draft Barnes 01 [3] was the first incarnation in which DNS
challenges are completed by placing a nonce in a DNS record. The
DNS challenge mechanism was then updated in Draft Barnes 03 [4]
to be a signature over the nonce by the account holder’s public key.

Draft Barnes 04 [5], only a minor refinement of 03, was then
adopted by the ACME working group as IETF Draft 00 [7], at
which point—only six weeks before LE was loaded into major
browsers’ certificate stores—a signature key substitution attack
was discovered and reported [6] to the IETF ACME mailing list.
(IETF ACME Draft 00 is also known as Barnes Draft 04.) The attack
allowed an active attacker to pass the ACME challenge and receive
a valid TLS certificate for any website using LE DNS Challenges,
and thus intercept and modify any such website’s TLS traffic. This
prompted the DNS Challenge to be updated to a hash of the ac-
count public key and the nonce (known as a key thumbprint) in
IETF Draft 02 [8]. This mechanism remains in use today [11].

The attack stems from Draft 00’s use of a DNS-based signature
challenge, shown in Figure 7a: the website owner requests a ran-
dom nonce from LE, signs the nonce with a key to be used in the
new certificate, and places the signature in a DNS record for the do-
main. LE then extracts and verifies the signature from the website’s
DNS records, concluding that the owner controls (i) the claimed
private key and (ii) the DNS records for that website. Based on that
conclusion, it issues a certificate for the corresponding public key.

In the attack, depicted in Figure 7b, suppose Alex has completed
a LE ACME challenge as normal, and has placed the signature in
their DNS records. The adversary can begin a new instance of the
challenge response protocol with the CA, claiming ownership of
Alex’s website and receive a token to sign and display in Alex’s DNS
records. The adversary then performs a key substitution (no-DEO)
attack on Alex’s signature and the new token value (and updates
their account key accordingly). Afterwards, they trigger the second
phase of the protocol by sending the Ready message. LE retrieves
Alex’s signature and verifies it against the adversary’s malicious
public key. This succeeds and LE will now issue the adversary a
certificate for Alex’s website and the adversary’s public key.
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Figure 7: ACME Draft 00 Let’s Encrypt DNS Challenge Response Protocol. The dotted arrows indicate that the channel is assumed to be
authentic.

5.1.1 Analysis of ACME. We developed a Tamarin model of the
vulnerable draft of the ACME certificate issuance protocol. Using
our model from §4, we automatically find the reported attack. We
check that using the traditional symbolic model of signatures Tam-
arin successfully verifies ACME, confirming that it misses this at-
tack without our improvements. We also provide a Tamarin model
corresponding to IETF ACME Draft 02 [8], the patched version of
ACME. Although the IETF could have elected to use a signature
scheme which provides DEO, they it felt it safer to forgo the use
of signatures entirely, instead replacing the signed value with a
hash of the account public key and the token. Using our SVS model,
Tamarin verifies the attack is no longer possible. We collect these
results in Table 4.

This example also illustrates the complementary uses of SVS and
our attack finding models, such as ‘no-DEO’. Whilst SVS reports an
attack, the attack trace does not correspond exactly to the attack
reported on the mailing list [6]—rather, the trace simply allows an
adversary to successfully pass the verification directly, since this
possibility is not excluded by the EUF-CMA definition. If we then
use our ‘no-DEO’ equation from §3, Tamarin recovers the exact
attack trace from the initial report. This demonstrates the utility of
our two-pronged approach.

Previously, Bhargavan et al. [34] presented a symbolic model
of draft Barnes 01 [3] (which they refer to as ACME Draft 1) and
draft IETF 00 [7] (referred to as ACME Draft 4) using ProVerif.
Due to the traditional symbolic signature model, their analysis
missed this attack. In fact, their analysis concluded the (vulnerable)
draft IETF 00 satisfied stronger security properties than the earlier
(secure) draft Barnes 01, which contradicts our findings.

5.2 WS-Security
In 2004, the OASIS Consortium published theWeb Services Security
Standard [1], which defines a suite of protocols for securing XML
web requests and responses without requiring the use of TLS (which
was not yet widely deployed). This standard enjoyed considerable
popularity until it was overtaken by SAML and later TLS based
solutions. Nonetheless, it is still in use and supported by many
enterprise frameworks such as gSOAP [15], Apache CXF [13], IBM
Websphere [19], and Microsoft’s WCF [18].

As well as suffering from a number of implementation flaws,
primarily due to the complexities of XML parsing and canonicalisa-
tion [20], the complexity and popularity of the standard made it
of considerable interest to the automated verification community
[24, 33, 35–37], leading to the creation of verified cross compilers
which could accept a protocol specification from the standard and
produce both an automated proof of security using ProVerif and an
executable implementation in F# [37].

The 1.0 standard published in 2004 was later superseded by the
1.1 standard released in 2006 [1]. One of the motivations for the
updated standard was the introduction of Signature Confirmation,
a mechanism for correlating requests and responses to prevent
adversarial manipulation [33]. The principal idea of Signature Con-
firmation is that after receiving a signed request, the responder’s
signature should also cover the signature from the request.

Although the standard only directly defined a method for specify-
ing particular message formats and how to parse them, a number
of example handshakes and ‘scenarios’ were also provided. One
such scenario which saw widespread adoption was WSS1.1-MA-
X509-SE [21] which is depicted in Figure 8a. It supports a request
response framework where each party holds a X.509 certificate and
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(b) This attack violates request correlation and response secrecy. The Attacker passes off the
Initiator’s request as their own by replacing the certificate, can then learn the response and can
even pass it back to the Initiator. Note that the responder does check the match of signature σ1
and certificate certa , but is fooled due to no-CEO.

Figure 8: The WSS1.1-MA-X509-SE protocol from [21] and the attack we automatically discovered.

corresponding private key and claims to provide mutual authen-
tication of the communicating parties, as well as binding requests
and response together securely using signature confirmation. In
addition to being the default setting in IBM’s Websphere Platform
[19], documentation of its use as a default can still be found for the
Spring Framework [12], the Windows Communication Foundation
[9], Oracle’s Fusion Middleware [2] and Apache CXF [10].

In 2006, a team at Microsoft Research verified the design of this
protocol and the benefits of signature confirmation using ProVerif
[35]. In addition to proving the secrecy of requests and responses
made in the protocol, they also proved ‘request correlation’, that
every accepted response matched the intended request. This ana-
lysis was also followed up on in [37], where it was dubbed ‘WS
Request-Response’ and the authors presented a tool for extracting
ProVerif models of the protocol from F# implementations.

Using our new model for signature verification, we revisit this
protocol in Tamarin. We automatically discover a number of at-
tacks, the most devastating of which makes use of the no-CEO
property to ‘steal’ a client’s request and is depicted in Figure 8b.
Not only does this violate the request correlation property that
signature confirmation was introduced to ensure, but furthermore
the attacker can learn the contents of the response to the honest
request, violating the secrecy requirement.

There are many scenarios in which this would be damaging,
notably if the request contained login credentials and the response
a cookie or other secret authentication response. The previous
analyses in ProVerif could not have discovered this attack, as they
used the traditional symbolic model of signatures, which does not
consider these types of attacks.

We stress that whilst we demonstrate our attack on this particular
protocol, it is the very mechanism of signature confirmation which
is flawed. Signing a signature does not (necessarily) create a unique
binding to the contents or public key of the signed signature. Instead,
it is much better practice to directly sign the original message
and original public key. Using our SVS model, we verify that this
proposal fixes the security issues in the original protocol.

5.3 DRKey and OPT
The “Dynamically Recreatable Key” Protocol (DRKey) was first
published in 2014 [64] and was supported by a mechanised proof
performed using Coq [74]. It is a lightweight key exchange protocol
for routers on a packet-switched network to agree on symmetric
keys, used as part of a secure routing architecture.

At a high level, DRKey participants generate directional sym-
metric secret keys, one for use with each other participant. They
send both a public-key encryption and signature of the key to the
recipient, thereby securely transporting and authenticating the
keys to other participants. These keys are then used as part of a
higher-level protocol called “Origin and Path Trace” (OPT) [64].
OPT aims to prevent malicious routers from altering the paths of
packets through a wider network, using the keys generated by DR-
Key to authenticate each link in turn. One of OPT’s security goals
is that malicious routers should only be able to affect routes to their
immediate neighbours:

“When there are multiple adjacent malicious nodes on the intended
path, a wormhole is present: an honest node down the path can only
conclude that the packet has entered the hole via the first malicious
node and exited from the last malicious node.”

Zhang et al. [74, Section 6.2] presents a formal analysis and
claims that this non-collusion property holds. We automatically
find a previously unreported attack on this property with Tamarin.
We also show that using the traditional model of digital signatures
leads to a successful Tamarin verification which misses our attack.

We describe the attack using an example topology, in which
S and D are an honest source and destination, H1,H2 are honest
routers, andM1,M2,M3 are malicious routers. S wishes to send a
packet to D along the intended upper path shown in black. H2 is
an honest router, not on the intended path; the malicious routers
collude to route the packet through H2 on the lower path (in red)
while S and D believe that it took its intended route via M2. This
violates the security requirement we quoted earlier, which requires
that the packets travel the edge H1 → M2, whereas due to our
attack they will instead transit H1 → H2.



Previous traditional verification Attacks found in this work by adding our new signature models

Protocol Ref Year Methodology Properties violated Model Time (s) Section First Reported

X.509 Mutual Auth [35] 2006 ProVerif Correlation & Secrecy no-CEO 5 §5.2 This paper
WS Request-Response [37] 2008 F #→ ProVerif

STS-MAC-fix1 [70] 2012 Tamarin Authentication no-CEO 35 §3.1.1 [38]

STS-MAC-fix2 [70] 2012 Tamarin Authentication no-DEO 68 §3.1.2 [25]

DRKey & OPT [74] 2014 Coq Authentication & Collusion Resistance Coll. 2640 §5.3 This paper

ACME Draft 4 [34] 2017 ProVerif DNS Validation no-DEO 53 §5.1 [6]

Table 3: Summary of new findings using our signature models, compared to previous analyses that used the traditional symbolic model for
signatures. The previous analyses did not discover any attack on these protocol properties. In contrast, our new approach efficiently finds
attacks, including previously unreported ones.

S M1 H1 M2

H2

M3 D

The attack arises because of the ability to re-sign secret messages
under a new key. The message used to pass keys in DRKey is:

aencpkS,t (KH2,S ), signskH2
(KH2,S , pkS,t , S)

Here we show the message produced byH2, carrying keys intended
for S in the session using the temporary public encryption key
pkS,t . During the DRKey protocol, the adversary asM1 can forge a
message toH2, claiming that S wishes to agree on keys for the lower
path. WhenM3 receives the DRKey message from H2, containing a
signature and an encrypted key, the adversary (asM3) can re-sign
the packet as if it came fromM2 and pass it on to D. This is possible
even though the adversary does not know the message, and is a
behaviour not captured by traditional symbolic models. Note that
even if the DRKey implementation uses a signature scheme where
re-signing is not possible, e.g., Ed25519, the colliding signature
property can also be used to craft a signature for an unknown
message. The rest of DRKey proceeds as normal, at the end of
which S and D each hold a key they believe they share withM2, but
in fact they share this key with H2. This constitutes a UKS attack
on the DRKey Protocol.

The OPT protocol then prescribes a series of chained MACs
such that honest routers can detect maliciously-routed packets, and
that the destination can verify that the correct path was followed.
However, in the above context, S intends to route a packet viaM2
butM1 can maliciously alter the route to the lower path. Because S
and D share a key with H2, that they believe they share with M2,
neither of them can detect this malicious routing1. As a consequence
of this attack, M2 could bill S for routing packets, despite in fact
offloading all of the transmission work to the unsuspecting H2.

We stress that whilst we demonstrate this attack on the example
topology described above, it applies generally to any topology
where an adversary can control two (or more) adjacent malicious
1Perhaps a simpler form of misbehaviour would be rewriting the route S → M1 →
M2 → M3 → D to S → M1 → H → M3 → D . However, this does not technically
contradict OPT’s claimed security goals, while our example violates their non-collusion
property. The malicious router M1 is necessary in order to change the route of the
packet in the first place.

routers and at least one router earlier in the chain. Besides the
double billing attack we mentioned earlier, this attack could also
be used to perform a denial of service attack on an honest router,
by forcing additional packets to pass through it, despite the fact
both source and destination believe their packets are travelling a
different route.

As DRKey is intended for use in the SCION [68] internet archi-
tecture it is still under active development. The DRKey authors
agree that the attack we found is serious and have modified their
protocol according to our proposed fix. The prototype is already
updated and this will be reflected in an extension of their work,
which is currently under submission for publication.

Our proposed fix for this protocol follows the intuition behind
STS-KDF. We do not need to change any of the messages on the
wire, instead, we apply a key derivation function which binds each
key to the identity of the party who is using it, and the party they
believe they share it with. This suffices to prevent any unknown
key share attacks on DRKey, as honest parties will only agree on
keys if they also agree on identities. Using our SVS model of digital
signatures, Tamarin verifies the fix in only 7 seconds.

5.4 Summary
In Table 3 we relate our attacks to previously published academic
papers. Notably, we have uncovered previously unknown attacks
on real world protocols that have previously undergone formal
analysis. Each attack relies on a subtle signature scheme property,
which previous analysis tools could not take into account. We have
responsibly disclosed our attacks.

We give a brief summary of the performance of our case studies
and their proposed fixes in Table 4, showing the overall tractab-
ility of our approach. Our combined approach (verification with
SVS, attack finding with the equational model) demonstrates its
utility here: SVS is both more efficient and finer-grained where the
protocol verifies. In contrast, when there is an attack, our attack
finding models are quickest.

In conjunction with a companion work, building symbolic mod-
els of non-prime order groups [49], we investigated some common
cryptographic libraries’ handling of Ed25519 signatures. We dis-
covered that whilst LibSodium [17], Golang’s NaCl Module [16],
Project Everest’s formally verified HACL [75] and Cloudflare’s
CIRCL [14] advertise the same API and ‘drop in’ compatibility, they



Protocol Signature Analysis Time in
Model results seconds

WS-Security
Traditional ✓ 3
no-CEO •◦ 5
SVS •◦ 12

WS-Security (fixed)
Traditional ✓ 2
All in §3 ✓ 12
SVS ✓ 13

LE-00
Traditional ✓ 1
no-DEO •◦ 53
SVS •◦ 98

LE-02
Traditional ✓ 1
All in §3 ✓ 2
SVS ✓ 1

DRKey
Traditional ✓ 240
Coll. •◦ 2640
SVS •◦ Manual

DRKey (fixed)
Traditional ✓ 4
All in §3 ✓ 32
SVS ✓ 7

Table 4: Verification results on our further case studies.
✓ indicates that Tamarin successfully verified the property
•◦ indicates that Tamarin found an attack.
Manual indicates that Tamarin’s interactive mode was used to re-
construct the attack trace as Tamarin’s built in heuristics did not
terminate in a reasonable timeframe.

are not consistent in their handling of Ed25519 signatures. Not-
ably, LibSodium checks for and rejects ’low order points’ which are
used to construct colliding Ed25519 signatures. However, the other
three libraries accept these points, allowing colliding signatures to
be crafted. We reached out to the maintainers of each library and
they have fixed (or agreed to fix) this issue, ensuring that protocol
developers are not caught unaware.

Full sources to all of our models are available at [58].

6 OTHER RELATEDWORK
In the preceding, we discussed in detail the existing literature on
symbolic models of digital signatures as we presented various as-
pects. In this section we briefly mention some alternative strands
of research aiming to tackle similar problems.

Automated Computational Verification. Computational proofs do
not rely on an abstraction of signature schemes, instead reducing
security of a protocol directly to (among other things) EUF-CMA. A
few tools aim to construct these proofs either automatically [40] or
with human assistance [28, 30]; they have the great advantage that
all behaviours of the signature scheme are by definition captured,
since the reduction is directly to its security definition. This also
means that proofs at this level are generally much more challenging
to produce, and harder to scale to more complex protocols.

Computational Soundness. Backes et al. [23] consider the compu-
tational soundness of existing symbolic models for digital signatures.
A symbolic model is computationally sound for a particular class
of protocols and properties if the existence of a symbolic proof
of a property implies the existence of a computational one. Most
computational soundness approaches in the literature require that
primitives be used in a carefully controlled fashion; for example,[23]
required that signatures verify under unique public keys and for
unique messages. While it seems that such requirements can be
enforced by mechanisms such as appropriate tagging, real-world
protocols typically do not (or cannot) meet these requirements,
thereby limiting the applicability of these approaches.

Bana et al. propose an alternative model for protocol verification
which they call the Computationally Complete Symbolic Attacker,
see, e.g., [26, 27]. Their approach is the first attempt to base a
symbolic model on adversary restrictions, rather than explicit cap-
abilities. They have not yet shown their approach can be automated
in practice. In their model, correctness is specified and then the
adversary is permitted to act freely as long as it does not violate the
axioms. Their computational soundness results apply to the proof,
so that the resulting protocol is proved secure computationally.

This approach has the potential to be very powerful, and may
provide an alternative to our verification approach. However, their
approach is in its early stages: it works only for a bounded number
of sessions and does not have tool support yet, unlike ours which is
unbounded and has full tool support. Additionally, their approach is
focused on proof finding, without support for establishing attacks.

7 CONCLUSIONS
In this work, we revisited many subtle behaviours of digital sig-
nature schemes, such as the possibility of key substitution and
malleability, and showed how they fall between the cracks: their
absence is not guaranteed by the classical EUF-CMA security defin-
ition for signatures, but at the same time their absence is assumed
by modern automated protocol analyses. Yet the presence of such
behaviours can lead, and has led, to critical attacks.

We developed a range of alternative signature models for use in
modern tools. Our models capture a wide range of these behaviours
and give a general theory for verification of their absence. We
thereby provide the first automated procedure to show the absence
or presence of attacks exploiting these subtle behaviours.

As a side effect of evaluating the effectiveness of our work, we
found two new attacks on protocols, which is remarkable for mul-
tiple reasons: the WS-Security protocols served as the basis of
globally used technologies and were therefore under close scrutiny,
and both WS-Security and DRKey were previously proven secure.

In the wider sense, our work increases the scope of attacks con-
sidered by automated analysis tools: future protocol analysis models
that include our more accurate equations will be able to find more
attacks, or show the absence of more attack types.

A more long-term question is whether it is possible to “close
the gap” between falsification and verification, showing that any
attack found in our general theory corresponds to a real attack on
the underlying signature scheme itself.
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